Quantitative assessment of damage in composites by implementing acousto-ultrasonics technique

Kumar Shantanu Prasad, Gbanaibolou Jombo, Sikiru Oluwarotimi Ismail, Yong Kang Chen, Hom Dhakal

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    23 Downloads (Pure)

    Abstract

    This study focused on quantitative damage severity assessment in composite materials using Acousto-Ultrasonics (AU), an in-service and active non-destructive inspection technique in which Lamb waves are communicated through a damaged zone. This was done by activating a signal onto the composite material surface and acquiring the received waves after their interactions with the damage. It relied on early research that presented a series of stress wave factors (SWFs) derived from the frequency-domain of the AU data, as quantitative identifiers of the received signal. Although, the SWFs have previously been proven to determine the understanding of the spatial arrangements of the impact damage, the degree or severity of the damage inside the impact damage area has not been assessed. Therefore, the current research was a step in the right way toward that aim. AU waves were generated via a laminate with increasing concentrations of ply faults, across longitudinal length. The stress wave factors were first examined for an undamaged composite, and the SWFs were then connected with the fault concentration. The significance of the found linkages and the possible futures of quantitative assessment of the degree of damage by such relationships were examined. The stress wave factors showed clear and consistent patterns, as the fault concentration increased. With a rise in fault density, an element measuring the energy content of the waves significantly changed with R-sq(adj) = 91.33% and almost linearly, and provided a robust measurable trend, while other parameter exhibited lesser shifts with R-sq(adj) = 51.86%. The result obtained from the presented work provided a base to cost-effective and in-service measure to early detection of catastrophic failures in composite structures, including the wind turbine blades for renewable and sustainable energy generation.
    Original languageEnglish
    Title of host publicationEnergy and Sustainable Futures: Proceedings of the 3rd ICESF, 2022
    EditorsJonathan D. Nixon, Amin Al-Habaibeh, Vladimir Vukovic, Abhishek Asthana
    PublisherSpringer
    Chapter20
    Pages209-217
    Number of pages9
    Edition1st
    ISBN (Electronic)9783031309601
    ISBN (Print)9783031309595, 9783031309625
    DOIs
    Publication statusPublished - 12 Aug 2023
    EventICESF 2022: Energy and Sustainable Futures: Proceedings of the 3rd ICESF, 2022 - Coventry, United Kingdom
    Duration: 7 Sept 20228 Sept 2022

    Publication series

    NameSpringer Proceedings in Energy
    PublisherSpringer
    ISSN (Print)2352-2534
    ISSN (Electronic)2352-2542

    Conference

    ConferenceICESF 2022
    Country/TerritoryUnited Kingdom
    CityCoventry
    Period7/09/228/09/22

    Keywords

    • acousto-ultrasonics
    • non-destructive evaluation
    • wave propagation

    Fingerprint

    Dive into the research topics of 'Quantitative assessment of damage in composites by implementing acousto-ultrasonics technique'. Together they form a unique fingerprint.

    Cite this