TY - JOUR
T1 - Cosmological parameter analysis including SDSS Lyα forest and galaxy bias
T2 - constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy
AU - Seljak, Uros
AU - Makarov, Alexey
AU - McDonald, Patrick
AU - Anderson, Scott F.
AU - Bahcall, Neta A.
AU - Brinkmann, J.
AU - Burles, Scott
AU - Cen, Renyue
AU - Doi, Mamoru
AU - Gunn, James E.
AU - Ivezic, Zeljko
AU - Kent, Stephen
AU - Loveday, Jon
AU - Lupton, Robert H.
AU - Munn, Jeffrey
AU - Nichol, Robert C.
AU - Ostriker, Jeremiah
AU - Schlegel, David J.
AU - Schneider, Donald P.
AU - Tegmark, Max
AU - Berk, Daniel E. Vanden
AU - Weinberg, David H.
AU - York, Donald
PY - 2005/5/20
Y1 - 2005/5/20
N2 - We combine the constraints from the recent Lyα forest analysis of the Sloan Digital Sky Survey (SDSS) and the SDSS galaxy bias analysis with previous constraints from SDSS galaxy clustering, the latest supernovae, and 1st year WMAP cosmic microwave background anisotropies. We find significant improvements on all of the cosmological parameters compared to previous constraints, which highlights the importance of combining Lyα forest constraints with other probes. combining WMAP and the Lyα forest we find for the primordial slope ns = 0:98±0:02. We see no evidence of running, dn/=d lnk 0:003±0:010, a factor of 3 improvement over previous constraints. We also find no evidence of tensors, r < 0:36 (95% c.l.). Inflationary models predict the absence of running and many among them satisfy these constraints, particularly negative curvature models such as those based on spontaneous symmetry breaking. A positive correlation between tensors and primordial slope disfavors chaotic inflation-type models with steep slopes: while the V αø 2 model is within the 2-sigma contour, V αø4 is outside the 3- sigma contour. For the amplitude we find σ8 = 0:90 ± 0:03 from the Lyα forest and WMAP alone. We find no evidence of neutrino mass: for the case of 3 massive neutrino families with an inflationary prior, Σmv < 0:42 eV and the mass of lightest neutrino is m1 < 0:13 eV at 95% c.l. For the 3 massless +1 massive neutrino case we find mv < 0:79 eV for the massive neutrino, excluding at 95% c.l. all neutrino mass solutions compatible with the LSND results. We explore dark energy constraints in models with a fairly general time dependence of dark energy equation of state, finding Ωλ =0:72± 0:02, w(z = 0:3) = 0:98+0.10 -0.12,the latter changing to w(z = 0:3) = -0.92+0.09-0.10 if tensors are allowed. We find no evidence for variation of the equation of state with redshift, w(z = 1) = -1.03+0.21-0.28. These results rely on the current understanding of the Lyα forest and other probes, which need to be explored further both observationally and theoretically, but extensive tests reveal no evidence of inconsistency among different data sets used here.
AB - We combine the constraints from the recent Lyα forest analysis of the Sloan Digital Sky Survey (SDSS) and the SDSS galaxy bias analysis with previous constraints from SDSS galaxy clustering, the latest supernovae, and 1st year WMAP cosmic microwave background anisotropies. We find significant improvements on all of the cosmological parameters compared to previous constraints, which highlights the importance of combining Lyα forest constraints with other probes. combining WMAP and the Lyα forest we find for the primordial slope ns = 0:98±0:02. We see no evidence of running, dn/=d lnk 0:003±0:010, a factor of 3 improvement over previous constraints. We also find no evidence of tensors, r < 0:36 (95% c.l.). Inflationary models predict the absence of running and many among them satisfy these constraints, particularly negative curvature models such as those based on spontaneous symmetry breaking. A positive correlation between tensors and primordial slope disfavors chaotic inflation-type models with steep slopes: while the V αø 2 model is within the 2-sigma contour, V αø4 is outside the 3- sigma contour. For the amplitude we find σ8 = 0:90 ± 0:03 from the Lyα forest and WMAP alone. We find no evidence of neutrino mass: for the case of 3 massive neutrino families with an inflationary prior, Σmv < 0:42 eV and the mass of lightest neutrino is m1 < 0:13 eV at 95% c.l. For the 3 massless +1 massive neutrino case we find mv < 0:79 eV for the massive neutrino, excluding at 95% c.l. all neutrino mass solutions compatible with the LSND results. We explore dark energy constraints in models with a fairly general time dependence of dark energy equation of state, finding Ωλ =0:72± 0:02, w(z = 0:3) = 0:98+0.10 -0.12,the latter changing to w(z = 0:3) = -0.92+0.09-0.10 if tensors are allowed. We find no evidence for variation of the equation of state with redshift, w(z = 1) = -1.03+0.21-0.28. These results rely on the current understanding of the Lyα forest and other probes, which need to be explored further both observationally and theoretically, but extensive tests reveal no evidence of inconsistency among different data sets used here.
U2 - 10.1103/PhysRevD.71.103515
DO - 10.1103/PhysRevD.71.103515
M3 - Article
SN - 1550-7998
VL - 71
JO - Physical Review D
JF - Physical Review D
IS - 10
ER -