Antimicrobial peptide functionalized gold nanorods combining near-infrared photothermal therapy for effective wound healing

Xinyu Xu, Yujie Ding, Roja Hadianamrei, Songwei Lv, Rongrong You, Fang Pan, Peng Zhang, Nan Wang, Xiubo Zhao*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Photothermal therapy using laser activated gold nanorods (AuNRs) is a strategy for treatment of bacterial infections. Nevertheless, it also exerts cytotoxicity against human cells which leads to adverse effects in healthy human tissues and limits the applicable dose. Functionalization of AuNRs with a selective antimicrobial peptide (AMP) with higher selectivity for bacteria over human cells is a promising strategy for increasing the selectivity of the AuNRs for bacteria, hence increasing their cellular uptake by the bacteria in order to achieve stronger antimicrobial effects with lower doses of AuNRs without damaging the human cells. In this study, the surface of AuNRs was functionalized with a short AMP named C-At5 and the efficiency of the peptide functionalized AuNRs in killing gram-positive and gram-negative bacteria was evaluated in vitro as well as their potential for facilitating wound healing in a mouse model of wound infection with and without application of laser. The peptide-conjugated AuNRs exhibited higher antibacterial activity in vitro compared to the plain AuNRs both in the presence and absence of laser irradiation. Furthermore, AuNR@C-At5 had very low toxicity against human skin fibroblasts and human red blood cells indicating their higher biocompatibility compared to the plain AuNRs. Treatment of wounded mice with AuNR@C-At5 accelerated the wound healing process which was further enhanced by applying laser. The system developed in this study has great potential for customization for specific antimicrobial or antifungal therapy via conjugation of different types of AMPs with higher selectivity and can therefore serve as a guide for any future attempts in this regard.
    Original languageEnglish
    Article number112887
    Number of pages11
    JournalColloids and Surfaces B Biointerfaces
    Volume220
    Early online date30 Sept 2022
    DOIs
    Publication statusPublished - 1 Dec 2022

    Keywords

    • Photothermal therapy
    • Gold nanoparticles
    • Antimicrobial peptide
    • Wound healing

    Fingerprint

    Dive into the research topics of 'Antimicrobial peptide functionalized gold nanorods combining near-infrared photothermal therapy for effective wound healing'. Together they form a unique fingerprint.

    Cite this